Resonance scattering with exotic beams - past, present, and future

G.V. Rogachev
Outline

- Historical perspective
- Experimental aspects
- Proton rich nuclei
- Clustering phenomena
- Neutron rich nuclei
Early days of RS…

- Well understood theoretically
- Perfect energy resolution (~10 keV)
- Limited accessible energy range

Special cases:
- IAS (ex. J. Fox, D. Robson in 60s at FSU)
- alpha clusters (ex. H.T. Richards, et al., U of Wis. - Mad)
Recent history...

Exotic nuclei

- Low lying states are accessible
- Level density is low

Need R/A beams and
New Experimental approach
Experimental evolution

FROM:
Thick Target Inverse Kinematics technique

TO:
Active Targets
TexAT
AT-TPC
Proton rich nuclei

stable

β^-

β^+

unbound, first observed in RS
Talk of J. Hooker on structure of 9C in this session
Evolution of 1p1/2 and 2s1/2 shells for neutron deficient Z=7 isotopes

Also discussed by E. Vigezzi on Tuesday for N=7 isotones
Clustering phenomena

- Clustering plays important role in nuclear structure
- Alpha clusters manifest strongly in resonance scattering

\[\alpha \]

\[^{14}\text{C} \]

\[^{18}\text{O} \]

\[^{12}\text{C} \]

\[^{16}\text{O} \]

\[^{14}\text{C} \]

M. Avila, et al., PRC (2014)
E. Johnson, et al., EPJA (2009)
Negative parity α cluster band in 18O

W. von Oertzen, et al.
EPJ A 43 (2010)

R-matrix fit to the 14C+α experimental data

θ^2 values:
- $\theta^2 < 0.01$
- $\theta^2 = 0.02$
- $\theta^2 = 0.04$
- $\theta^2 = 0.20$
- $\theta^2 = 0.29$
- $\theta^2 = 0.46$
- $\theta^2 = 0.48$
- $\theta^2 = 0.18$
- $\theta^2 = 0.17$
Cluster structure of 10Be

- Rotational band with high moment of inertia built on 0^+ at 6.18 MeV
- 10.15 MeV state reported to be 4^+ [1,2] and extremely clustered [1]. Other spin-parity assignment was reported 3$^-$ [3].
- Believed to be associated with α-2n-α molecular rotational band.
- The next member of the highly deformed rotational band, 6$^+$, was predicted [4].

Cluster structure of 10Be

E. Koshchiy, et al., NIM A (2017)

$^6\text{He} + \alpha$

$\theta_{\text{cm}} = 85^\circ - 95^\circ$

$6^+??$
No evidence for 6^+

$^6\text{He} + \alpha$

$\theta_{\text{cm}} = 85^\circ - 95^\circ$

Also talk of D. Kim on Tuesday: $^{15}\text{O} + \alpha$ and $^{15}\text{N} + \alpha$
IAS in neutron rich nuclei

\[\text{p} + ^{8}\text{He} \rightarrow ^{9}\text{Li}(T=5/2) \rightarrow \text{p} + ^{8}\text{He} \]

ALSO:
Talks of S. Upadhyayula on \(^{47}\text{K}+\text{p}\) and C. Hunt on \(^{8}\text{Li}+\text{p}\) in this session
Structure of 9He

(a) Differential Cross Section [mb/sr]
(b) 135-166 Degrees
(c) 124-160 Degrees

- 8He beam produced by ISAC facility at TRIUMF
- No narrow states were observed
- Evidence for a very broad 1/2$^+$ state at ~2.5 MeV
Future of resonance scattering

- Active target inside a magnet
- 200 µm position resolution
- Energy resolution of few keV
- Narrow resonances (IAS, astrophysics)
Resonance scattering with exotic beams has many application and significant advantages.

Many results on structure of proton rich nuclei have been obtained.

Clustering phenomena studies with exotic beams is in its infancy - high statistics and wide angular range needs to be measured.

IAS states studies open a way to explore neutron rich nuclei - theoretical issues need to be resolved.
Positive parity inversion doublet quasi-rotation band in 18O

Cluster Nucleon Configuration Interaction Model (CNCIM)

Yu. Tchuvil’sky
A. Volya

Splitting is due to strong configuration mixing $(0p)^2(1s0d)^2$ and $(1s0d)^4$
\(Z=7\) isotopes
\(N=7\) isotones

\(^{11}\text{Be}\) \(\frac{1}{2}^+\) g.s.
\(^{11}\text{N}\) \(\frac{1}{2}^+\) g.s.

\(^{10}\text{Li}\) (2\(-\);1\(-\)) \(L=0\) g.s.?

\(^{10}\text{N}\) ?

\(^{13}\text{C}\) (1/2\(-\); g.s.)
\(^{13}\text{N}\) (1/2\(-\); g.s.)

\(^{9}\text{He}\) – all over the place
Structure of 10N and 9He studied using resonance elastic scattering.
Resonances in 10N were directly populated in 9C+p elastic scattering.
Resonances in 9He were studied through $T=5/2$ IAS in 9Li, populated in 8He+p elastic scattering.
Test with 12C beam - states in 13N

Red curve is an R-matrix calculation (not a fit!) based on known properties of the states in 13N.
Structure of ^{10}N

Excitation function for $^9\text{C}+\text{p}$ elastic scattering

(b) $\theta = 139^\circ - 162^\circ$

$S_p = 0.25$ or 0.4

$1^- (2^-)$

$S_p = 0.8$

$2^- (1^-)$

No resonances

Rutherford

^9C beam at energy 8 MeV/u was produced by MARS separator at Texas A&M U.
Structure of 10N

The only previous 10N result - A. Lepine-Szily, et al., PRC 65 (2002): possible observation of a broad structure at 2.6 MeV.
10Li structure

9Li(d,p)

$E = 22$ keV - virtual s-state
$E = 0.38$ MeV, $\Gamma = 0.20$ MeV

H. B. Jeppesen, et al.,
PLB 642 (2006) 449

11Li(p,d)

$E = 0.62$ MeV, $\Gamma = 0.33$ MeV

A. Sentullaev, et al.,
PLB 755 (2016) 481

9Li(d,p)

$E = 0.45$ MeV, $\Gamma = 0.68$ MeV

M. Cavallaro, et al.,
PRL 118 (2017) 012701

11Li frg

$\alpha = -30$ fm - virtual s-state
$E = 0.51$ MeV, $\Gamma = 0.54$ MeV

H. Simon, et al.,
Potential model extrapolation

PM parameters: $r_o = 1.25$ fm, $a=0.7$ fm, $r_c = 1.3$ fm

All values are in MeV. The experimental values for the known states are given. Potential model extrapolation are in parenthesis in red.
Previous results for ^9He

Recent $^8\text{He}(d,p)$ measurements indicate low lying $1/2^+$ and $1/2^-$ states

This contradicts earlier $^8\text{He}(d,p)$ data

M.S. Golovkov, et al., PRC 76 (2007) 021605
Level structure of ^9He inferred from the $^8\text{He}+p$ measurements and the phase shifts

![Graph showing phase shifts and level structure of ^9He]
Neutron s states in loosely bound nuclei

C. R. Hoffman, B. P. Kay, and J. P. Schif
Physics Division, Argonne National Laboratory, Argonne, Il
(Received 6 November 2013; revised manuscript received 13 May 2014)

From $^8\text{He}+p$ phase shift analysis
Acknowledgement

[Checkmark] TRIUMF: M. Alcorta, B. Davids